Graphs and Multi-graphs in Homogeneous 3-manifolds with Isometry Groups of Dimension 4
نویسندگان
چکیده
We study the existence of multi-graphs which are immersed in E3(κ, τ), having constant mean curvatureH, where E3(κ, τ) is a homogeneous, simply connected 3-manifold whose isometry group has dimension 4.
منابع مشابه
Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملQuasi-isometric Classification of Graph Manifolds Groups
We show that the fundamental groups of any two closed irreducible non-geometric graph-manifolds are quasi-isometric. This answers a question of Kapovich and Leeb. We also classify the quasi-isometry types of fundamental groups of graph-manifolds with boundary in terms of certain finite two-colored graphs. A corollary is a quasi-isometry classification of Artin groups whose presentation graphs a...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملQuasi-isometric Classification of Graph Manifold Groups
We show that the fundamental groups of any two closed irreducible nongeometric graph manifolds are quasi-isometric. We also classify the quasi-isometry types of fundamental groups of graph manifolds with boundary in terms of certain finite twocolored graphs. A corollary is the quasi-isometric classification of Artin groups whose presentation graphs are trees. In particular, any two right-angled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012